45S5 bioactive glass surface charge variations and the formation of a surface calcium phosphate layer in a solution containing fibronectin.
نویسندگان
چکیده
This study investigated the effect of fibronectin adsorption on surface charge variations and calcium phosphate (Ca-P) layer formation kinetics on the surface of 45S5 bioactive glass (BG). We hypothesize that the adsorption of fibronectin on BG changes the surface charge and alters the kinetics of Ca-P layer formation on the glass surface. The charge at a material's surface modulates surface chemistry, protein adsorption, and interactions with bone cells. The zeta potential of BG in a solution containing human plasma fibronectin (TE-FN) was measured as a function of time by particle electrophoresis, and Ca-P layer formation was characterized using SEM, EDXA, and FTIR. Si, Ca, and P solution concentrations also were determined. It was found that the adsorption of fibronectin reduced the initial electronegativity of the BG surface and delayed the formation of both the amorphous and the crystalline Ca-P layers. The delayed formation of these surface layers may be attributed to the competitive binding of Ca2+ ions by the fibronectin molecule. In addition, the formation of an amorphous Ca-P layer correlated with the reversal from a negatively to a positively charged surface, independent of the presence of fibronectin. The addition of a single protein (in this case fibronectin) can significantly alter material surface parameters, such as charge, and subsequently affect the formation of a surface Ca-P layer. Furthermore, the formation of an amorphous Ca-P layer is an important event in the reactions leading to bioactive behavior, and proteins such as FN are actively involved in the transformation of the surface into a Ca-P layer.
منابع مشابه
Temporal zeta potential variations of 45S5 bioactive glass immersed in an electrolyte solution.
45S5 bioactive glass (BG) is a bioactive material known to bond to bone in vivo through a surface calcium phosphate (Ca-P) layer. The goal of this study was to address the importance of BG surface charge in the bioactive response by examining the relationship between charge variations and the formation of the surface Ca-P layer. The zeta potential of BG in an electrolyte solution (TE) was measu...
متن کاملEnhancing the bioactivity of a calcium phosphate glass-ceramic with controlled heat treatment
In this paper synthesis and characterization of a bioactive calcium phosphate glass-ceramic is presented, synthesized using a facile method. The glass-ceramic samples are synthesized with heat treating the parent glass at appropriate temperatures, where different calcium phosphate crystalline phases are grown in the parent glass samples during the heat treatment. The amounts of elements a...
متن کاملSynthesis, in vitro evaluation and biological studies of copper-containing 58S bioactive glass
Cu-substituted 58S bioactive glasses (0-10%mol CuO) were synthesized by sol-gel method and the effect of copper substitution for calcium on their biodegradability, bone-like apatite formation, cell proliferation, alkaline phosphatase activity of M3T3-E1 osteoblast cells and antibacterial efficiency were investigated. The results of x-ray diffraction (XRD) and Fourier transform infrared spectros...
متن کاملFabrication, Characterization and Osteoblast Response of Cobalt-Based Alloy/Nano Bioactive Glass Composites
IIn this work, cobalt-based alloy/ nano bioactive glass (NBG) composites with 10, 15 and 20 wt% NBG were prepared and their bioactivity after immersion in simulated body fluid (SBF) for 1 to 4 weeks was studied. The scanning electron microscopy images of two- step sintered composites revealed a relatively dense microstructure the density of which decreased with the increase in the NBG amount. M...
متن کاملSol-Gel Synthesis, in vitro Behavior, and Human Bone Marrow-Derived Mesenchymal Stem Cell Differentiation and Proliferation of Bioactive Glass 58S
Background: Bioactive glasses 58S, are silicate-based materials containing calcium and phosphate, which dissolved in body fluid and bond to the bone tissue. This type of bioactive glass is highly biocompatible and has a wide range of clinical applications. Methods: The 58S glass powders were synthesized via sol-gel methods, using tetraethyl orthosilicate, triethyl phosphate, and calcium nitrate...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of biomedical materials research
دوره 54 3 شماره
صفحات -
تاریخ انتشار 2001